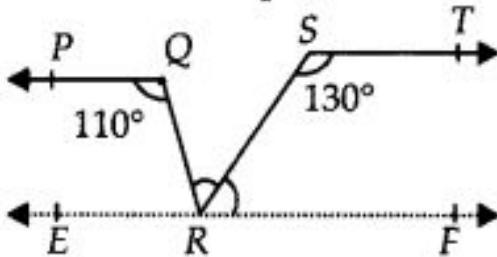


Lines and Angles Ex 6.2


prepared by surinder kumar

STUDY HUB

Question 4.

In figure, if $PQ \parallel ST$, $\angle PQR = 110^\circ$ and $\angle RST = 130^\circ$, find $\angle QRS$.

Solution:

Draw a line EF parallel to ST through R.

$PQ \parallel ST$ [Given]

and $EF \parallel ST$ [Construction]

$\therefore PQ \parallel EF$ and QR is a transversal

$\Rightarrow \angle PQR = \angle QRF$ [Alternate interior angles]

$\angle PQR = 110^\circ$ [Given]

$\therefore \angle QRF = \angle QRS + \angle SRF = 110^\circ \dots (1)$

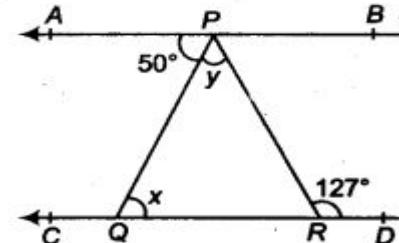
$ST \parallel EF$ and RS is a transversal

$\therefore \angle RST + \angle SRF = 180^\circ$ [Co-interior angles].

$130^\circ + \angle SRF = 180^\circ$

$$\Rightarrow \angle SRF = 180^\circ - 130^\circ = 50^\circ$$

from (1),.


$$\angle QRS + 50^\circ = 110^\circ$$

$$\Rightarrow \angle QRS = 110^\circ - 50^\circ = 60^\circ$$

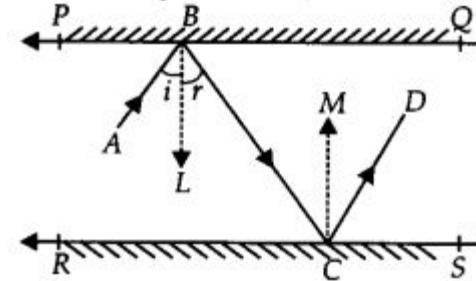
$$\angle QRS = 60^\circ.$$

Question 5.

In figure, if $AB \parallel CD$, $\angle APQ = 50^\circ$ and $\angle PRD = 127^\circ$, find x and y.

Solution:

We have $AB \parallel CD$ and PQ is a transversal.


$\therefore \angle APQ = \angle PQR$

[Alternate interior angles]

$50^\circ = x$ [$\because \angle APQ = 50^\circ$ (given)]
, $AB \parallel CD$ and PR is a transversal.
 $\therefore \angle APR = \angle PRD$ [Alternate interior angles]
 $\Rightarrow \angle APR = 127^\circ$ [$\because \angle PRD = 127^\circ$ (given)]
 $\Rightarrow \angle APQ + \angle QPR = 127^\circ$
 $\Rightarrow 50^\circ + y = 127^\circ$ [$\because \angle APQ = 50^\circ$ (given)]
 $\Rightarrow y = 127^\circ - 50^\circ = 77^\circ$
Thus, $x = 50^\circ$ and $y = 77^\circ$.

Question 6.

In figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B , the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD . Prove that $AB \parallel CD$.

Solution:

Draw ray $BL \perp PQ$ and $CM \perp RS$

$\because PQ \parallel RS \Rightarrow BL \parallel CM$
 $[\because BL \parallel PQ \text{ and } CM \parallel RS]$

$BL \parallel CM$ and BC is a transversal.

$\therefore \angle LBC = \angle MCB \dots(1)$ [Alternate interior angles]
, angle of incidence = Angle of reflection
 $\angle ABL = \angle LBC$ and $\angle MCB = \angle MCD$
 $\Rightarrow \angle ABL = \angle MCD \dots(2)$ [By (1)]

Adding (1) and (2),

$$\angle LBC + \angle ABL = \angle MCB + \angle MCD$$

$$\Rightarrow \angle ABC = \angle BCD$$

i. e., a pair of alternate interior angles are equal.

$\therefore AB \parallel CD$.