

NCERT Solutions for Class 9 Maths Chapter 6 Lines and Angles Ex 6.1

prepared by surinder kumar

Question 1

In figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^\circ$ and $\angle BOD = 40^\circ$, find $\angle BOE$ and reflex $\angle COE$.

Solution:

Since AB is a straight line,

$$\therefore \angle AOC + \angle COE + \angle EOB = 180^\circ$$

$$\text{or } (\angle AOC + \angle BOE) + \angle COE = 180^\circ \text{ or } 70^\circ + \angle COE = 180^\circ [$$

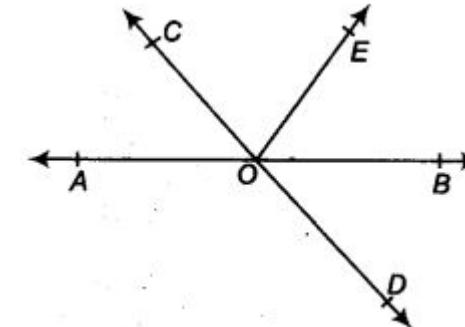
$$\therefore \angle AOC + \angle BOE = 70^\circ \text{ (Given)}]$$

$$\angle COE = 180^\circ - 70^\circ = 110^\circ$$

$$\therefore \text{Reflex } \angle COE = 360^\circ - 110^\circ = 250^\circ$$

Also, AB and CD intersect at O.

$$\therefore \angle COA = \angle BOD \text{ [Vertically opposite angles]}$$


$$\angle BOD = 40^\circ \text{ [Given]}$$

$$\therefore \angle COA = 40^\circ$$

$$\text{Also, } \angle AOC + \angle BOE = 70^\circ$$

$$\therefore 40^\circ + \angle BOE = 70^\circ \text{ or } \angle BOE = 70^\circ - 40^\circ = 30^\circ$$

Thus, $\angle BOE = 30^\circ$ and reflex $\angle COE = 250^\circ$.

Question 2.

In figure, lines XY and MN intersect at O. If $\angle POY = 90^\circ$, and $a : b = 2 : 3$. find c.

Solution:

Since XOY is a straight line.

$$\therefore b + a + \angle POY = 180^\circ.$$

$$\therefore \angle POY = 90^\circ \text{ [Given]}$$

$$\therefore b + a = 180^\circ - 90^\circ = 90^\circ \dots (i)$$

$$\text{Also } a : b = 2 : 3 \Rightarrow b = \frac{3a}{2} \dots (ii)$$

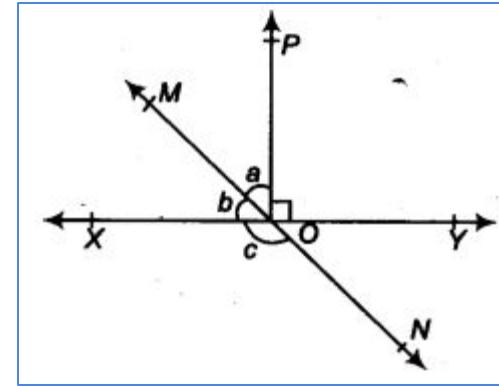
Now from (i) and (ii), we get

$$\frac{3a}{2} + a = 90^\circ$$

$$\Rightarrow \frac{5a}{2} = 90^\circ$$

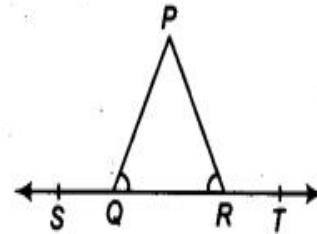
$$\Rightarrow a = \frac{90}{5} \times 2 = 36^\circ = 36^\circ$$

From (ii), we get


$$b = 32 \times 36^\circ = 54^\circ$$

Since XY and MN intersect at O,

$$\therefore c = [a + \angle POY] \text{ [Vertically opposite angles]}$$


$$\text{or } c = 36^\circ + 90^\circ = 126^\circ$$

Thus, the required measure of c = 126° .

Question 3.

In figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

Solution:

ST is a straight line.

$$\therefore \angle PQR + \angle PQS = 180^\circ \dots (1) \text{ [Linear pair]}$$

$$\text{Similarly, } \angle PRT + \angle PRQ = 180^\circ \dots (2) \text{ [Linear Pair]}$$

From (1) and (2), we have

$$\angle PQS + \angle PQR = \angle PRT + \angle PRQ$$

$$\angle PQR = \angle PRQ \text{ [Given]}$$

$$\therefore \angle PQS = \angle PRT$$

Question 4.

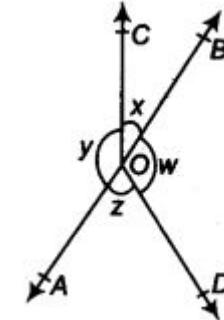
In figure, if $x + y = w + z$, then prove that AOB is a line.

Solution:

Sum of all the angles at a point = 360°

$$\therefore x + y + z + w = 360^\circ.$$

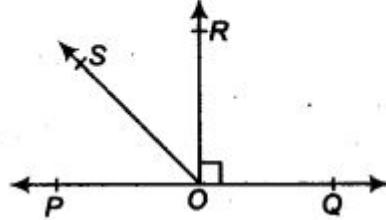
$$(x + y) + (z + w) = 360^\circ.$$


$$(x + y) = (z + w) \text{ [Given]}$$

$$\therefore (x + y) + (x + y) = 360^\circ,$$

$$2(x + y) = 360^\circ$$

$$(x + y) = 360/2 = 180^\circ$$


\therefore AOB is a straight line.

Question 5.

In figure, POQ is a line. Ray OR is perpendicular to line PQ . OS is another ray lying between rays OP and OR . Prove that

$$\angle \text{ROS} = \frac{1}{2}(\angle \text{QOS} - \angle \text{POS})$$

Solution:

ray POQ is a straight line. [Given]

$$\therefore \angle \text{POS} + \angle \text{ROS} + \angle \text{ROQ} = 180^\circ$$

But $\text{OR} \perp \text{PQ}$

$$\therefore \angle \text{ROQ} = 90^\circ$$

$$\Rightarrow \angle \text{POS} + \angle \text{ROS} + 90^\circ = 180^\circ$$

$$\Rightarrow \angle \text{POS} + \angle \text{ROS} = 90^\circ$$

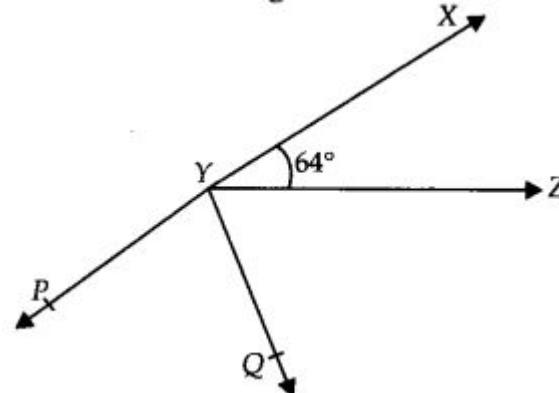
$$\Rightarrow \angle \text{ROS} = 90^\circ - \angle \text{POS} \dots (1)$$

$$\text{we have } \angle \text{ROS} + \angle \text{ROQ} =$$

$$\angle \text{QOS}$$

$$\Rightarrow \angle \text{ROS} + 90^\circ = \angle \text{QOS}$$

$$\Rightarrow \angle \text{ROS} = \angle \text{QOS} - 90^\circ \dots \dots (2)$$


Adding (1) and (2), we have

$$2 \angle \text{ROS} = (\angle \text{QOS} - \angle \text{POS})$$

$$\therefore \angle \text{ROS} = \frac{1}{2}(\angle \text{QOS} - \angle \text{POS})$$

Question 6.

It is given that $\angle \text{XYZ} = 64^\circ$ and XY is produced to point P . Draw a figure from the given information. If ray YQ bisects $\angle \text{ZYP}$, find $\angle \text{XYQ}$ and reflex $\angle \text{QYP}$.

Solution:

XYP is a straight line.

$$\angle XYZ + \angle ZYQ + \angle QYP = 180^\circ$$

$$\Rightarrow 64^\circ + \angle ZYQ + \angle QYP = 180^\circ$$

[$\because \angle XYZ = 64^\circ$ (given)]

$$\Rightarrow 64^\circ + 2\angle QYP = 180^\circ$$

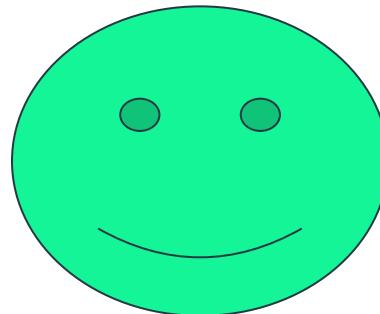
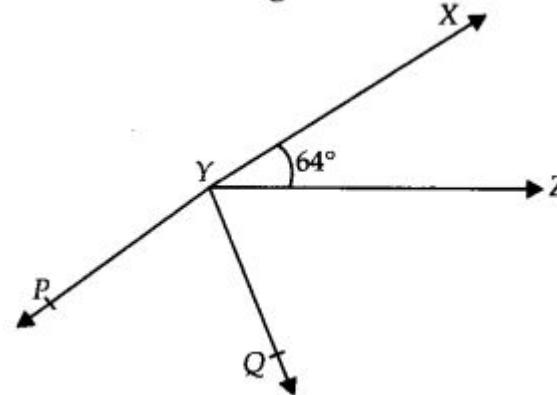
[YQ bisects $\angle ZYP$.]

$$\Rightarrow 2\angle QYP = 180^\circ - 64^\circ = 116^\circ$$

$$\Rightarrow \angle QYP = 116^\circ/2 = 58^\circ$$

$$\therefore \text{Reflex } \angle QYP = 360^\circ - 58^\circ = 302^\circ$$

Since $\angle XYQ = \angle XYZ + \angle ZYQ$



$$\Rightarrow \angle XYQ = 64^\circ + \angle QYP.$$

[$\because \angle XYZ = 64^\circ$ (Given) and $\angle ZYQ = \angle QYP$]

$$\Rightarrow \angle XYQ = 64^\circ + 58^\circ = 122^\circ \quad [\angle QYP = 58^\circ]$$

Thus, $\angle XYQ = 122^\circ$ and reflex $\angle QYP = 302^\circ$.

so, $\angle QYP = \angle ZYQ$]

Thank you